Exercises —

- 1. Harmonic functions. The *Laplacian* of a real-valued C^2 function $f : U \subset \mathbb{R}^n \to \mathbb{R}$ is defined as $\Delta f(p) := \sum_{k=1}^n D_{kk} f(p)$. The function f is called *harmonic* when $\forall p, \Delta f(p) = 0$. For the following functions f, compute Δf and determine whether f is harmonic or not.
 - (a) $f(x_1, x_2) = e^{x_1} \sin x_2$ on $U = \mathbb{R}^2$,
 - (b)* $f(x_1, \ldots, x_n) = (x_1^2 + \cdots + x_n^2)^{\alpha}$ on $U = \mathbb{R}^n \{0\}$, for some real constant α .
- 2. Examples for the MVT. For every point $x = (x_1, x_2)$ in \mathbb{R}^2 which does not belong to the line $D: x_1 + x_2 = 0$, we put $f(x) = \frac{x_1 x_2}{x_1 + x_2}$.
 - (a) Explain briefly why f is differentiable on $\mathbb{R}^2 \setminus D$ and compute $\nabla f(x)$ at any point x.
 - (b) If x = (1, 1) and y = (2, 4), find all the points z on the segment [x, y] such that

$$\langle \nabla f(z), y - x \rangle = f(y) - f(x)$$

(c) Same question with x = (1,1) and y = (2,2). And again the same question with x = (1,1) and y = (-2,1).

3. A partial differential equation. Using the change of variables $\begin{cases} u = x + y \\ v = 2x + 3y \end{cases}$, find all C^2 functions defined on \mathbb{R}^2 such that $3\frac{\partial f}{\partial x} - 2\frac{\partial f}{\partial y} = 0$.

- Problems -

- 4. **Radial harmonic functions.** Let *g* be a C^2 function on $\mathbb{R}_{>0}$. We define a function on $\mathbb{R}^2 \setminus \{0\}$ by $f(x) = g(||x||^2)$ where ||x|| is the Euclidean norm of *x*.
 - (a) Show that f is C^2 and compute its Laplacian.
 - (b) We assume now that f is harmonic. Prove that h = g' satisfies the differential equation h(r) + rh'(r) = 0 (*).
 - (c) Solve (*) and find the form of f.
- 5. Local vs. global diffeomorphism. Let *f* be the function defined by

$$f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}^2 - \{(0,0)\}$$

(x,y) $\mapsto (x^2 - y^2, 2xy).$

We will show that *f* is a *local diffeomorphism*, i.e. $\forall p$ in the domain, $\exists N$ a neighborhood of *p* such that $f_{\mid N}$ is a differentiable bijection onto its image, whose inverse is also differentiable.

- (a) Show that $||f(x,y)|| = ||(x,y)||^2$ and that f(x,y) = f(x',y') if and only if we have (x,y) = (x',y') or (x,y) = -(x',y').
- (b) Consider the upper half plane $H = \{(x, y) | y > 0\}$. Check that f in injective on H and that $I = f(H) = \mathbb{R}^2 \setminus \{(u, v) | u \ge 0, v = 0\}$. *Hint: polar coordinates.*
- (c) Show that g is differentiable. *Hint: find* $g: I \rightarrow H$ s.t. $f \circ g$ is the identity.
- (d) Denote by R_{α} the rotation of the plane of angle α about the origin. Check that $\forall \alpha, f \circ R_{\alpha} = R_{2\alpha} \circ f$ and show that f is a local diffeomorphism. Is f injective on $\mathbb{R}^2 \setminus \{0\}$?