1. Harmonic functions. The Laplacian of a real-valued \mathcal{C}^{2} function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as $\Delta f(p):=\sum_{k=1}^{n} D_{k k} f(p)$. The function f is called harmonic when $\forall p, \Delta f(p)=0$. For the following functions f, compute Δf and determine whether f is harmonic or not.
(a) $f\left(x_{1}, x_{2}\right)=e^{x_{1}} \sin x_{2}$ on $U=\mathbb{R}^{2}$,
(b) ${ }^{*} f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\alpha}$ on $U=\mathbb{R}^{n}-\{0\}$, for some real constant α.
2. Examples for the MVT. For every point $x=\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2} which does not belong to the line $D: x_{1}+x_{2}=0$, we put $f(x)=\frac{x_{1} x_{2}}{x_{1}+x_{2}}$.
(a) Explain briefly why f is differentiable on $\mathbb{R}^{2} \backslash D$ and compute $\nabla f(x)$ at any point x.
(b) If $x=(1,1)$ and $y=(2,4)$, find all the points z on the segment $[x, y]$ such that

$$
<\nabla f(z), y-x>=f(y)-f(x)
$$

(c) Same question with $x=(1,1)$ and $y=(2,2)$. And again the same question with $x=(1,1)$ and $y=(-2,1)$.
3. A partial differential equation. Using the change of variables $\left\{\begin{array}{c}u=x+y \\ v=2 x+3 y\end{array}\right.$, find all \mathcal{C}^{2} functions defined on \mathbb{R}^{2} such that $3 \frac{\partial f}{\partial x}-2 \frac{\partial f}{\partial y}=0$.

— Problems -

4. Radial harmonic functions. Let g be a \mathcal{C}^{2} function on $\mathbb{R}_{>0}$. We define a function on $\mathbb{R}^{2} \backslash\{0\}$ by $f(x)=g\left(\|x\|^{2}\right)$ where $\|x\|$ is the Euclidean norm of x.
(a) Show that f is \mathcal{C}^{2} and compute its Laplacian.
(b) We assume now that f is harmonic. Prove that $h=g^{\prime}$ satisfies the differential equation $h(r)+r h^{\prime}(r)=0 \quad(*)$.
(c) Solve $(*)$ and find the form of f.
5. Local vs. global diffeomorphism. Let f be the function defined by

$$
\begin{aligned}
& f: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}^{2}-\{(0,0)\} \\
&(x, y) \quad \mapsto\left(x^{2}-y^{2}, 2 x y\right)
\end{aligned}
$$

We will show that f is a local diffeomorphism, i.e. $\forall p$ in the domain, $\exists N$ a neighborhood of p such that $f_{\mid N}$ is a differentiable bijection onto its image, whose inverse is also differentiable.
(a) Show that $\|f(x, y)\|=\|(x, y)\|^{2}$ and that $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$ if and only if we have $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ or $(x, y)=-\left(x^{\prime}, y^{\prime}\right)$.
(b) Consider the upper half plane $H=\{(x, y) \mid y>0\}$. Check that f in injective on H and that $I=f(H)=\mathbb{R}^{2} \backslash\{(u, v) \mid u \geq 0, v=0\}$. Hint: polar coordinates.
(c) Show that g is differentiable. Hint: find $g: I \rightarrow H$ s.t. $f \circ g$ is the identity.
(d) Denote by R_{α} the rotation of the plane of angle α about the origin. Check that $\forall \alpha, f \circ$ $R_{\alpha}=R_{2 \alpha} \circ f$ and show that f is a local diffeomorphism. Is f injective on $\mathbb{R}^{2} \backslash\{0\}$?

